
58   International Journal of Applied Metaheuristic Computing, 1(4), 58-75, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Keywords:	 Ant	Colony	Optimization,	Design	and	Implementation	Methodology,	Evolutionary	Algorithms,	
Genetic	Algorithm,	Metaheuristic	Methodology,	Operations	Research,	Tabu	Search

1. IntroductIon

Optimization problems, which occur in real 
world applications, are sometimes NP-hard. 
In the case of NP-hard problems, exact algo-
rithms need, in the worst case, exponential 
time to find the optimum. Metaheuristics or 
modern	heuristics deal with these problems by 
introducing systematic rules to escape from 
local optima. Metaheuristics are applicable to 
a wide range of optimization problems (Doreo 
et al., 2006; Morago, DePuy, & Whitehouse, 
2006). Some popular population-based me-

dImmA:
A design and Implementation methodology 

for metaheuristic Algorithms
A Perspective from Software development

Masoud	Yaghini,	Iran	University	of	Science	and	Technology,	Iran

Mohammad	Rahim	Akhavan	Kazemzadeh,	Iran	University	of	Science	and	Technology,	Iran

AbStrAct
Metaheuristic	algorithms	will	gain	more	and	more	popularity	in	the	future	as	optimization	problems	are	in-
creasing	in	size	and	complexity.	In	order	to	record	experiences	and	allow	project	to	be	replicated,	a	standard	
process	as	a	methodology	 for	designing	and	 implementing	metaheuristic	algorithms	 is	necessary.	To	 the	
best	of	the	authors’	knowledge,	no	methodology	has	been	proposed	in	literature	for	this	purpose.	This	paper	
presents	a	Design	and	 Implementation	Methodology	 for	Metaheuristic	Algorithms,	named	DIMMA.	The	
proposed	methodology	consists	of	three	main	phases	and	each	phase	has	several	steps	in	which	activities	that	
must	be	carried	out	are	clearly	defined	in	this	paper.	In	addition,	design	and	implementation	of	tabu	search	
metaheuristic	for	travelling	salesman	problem	is	done	as	a	case	study	to	illustrate	applicability	of	DIMMA.

taheuristic methods are genetic algorithm 
(Goldberg, 1989) and ant colony optimization 
(Dorigo & Stützle, 2004) in which collective 
intelligence play the important role (Wang, 
2010). Tabu search (Glover & Laguna, 1997) 
and simulated annealing (Kirkpatrick, Gelatt, 
& Vecchi, 1983) are the two popular single-
solution based metaheuristics that improve a 
single solution in an iterative algorithm.

With growing scale and complexity of 
optimization problems, metaheuristics will 
gain more and more popular. According to 
significant growth in using metaheuristics as 
optimization tools, there must be a standard 
methodology for design and implementing DOI: 10.4018/jamc.2010040104



International Journal of Applied Metaheuristic Computing, 1(4), 58-75, October-December 2010   59

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

them. Such a methodology is used for recording 
experience and allows projects to be replicated. 
Moreover, this standard methodology can be 
a comfort factor for new adopters with little 
metaheuristic experience, and can show the 
guidelines to everyone who want to design 
and implement metaheuristics.

To the best of our knowledge, no method-
ology has been proposed in literature for design 
and implementation metaheuristic algorithms. 
There are many software frameworks in the 
literature for metaheuristics (Voss & Woodruff, 
2002; Fink et al., 1999), in which framework 
means reusable programming codes and 
components for metaheuristics (Talbi, 2009). 
Hence, the meaning of frameworks in these 
references is different from our proposed 
methodology. Although there are several tutori-
als as lectures on how to design meheuristics 
(Thierens, 2008), they are sometimes for 
special metaheuristic and do not consider this 
process as a whole.

The proposed methodology in this paper, 
a Design	and	Implementation	Methodology	for	
Metaheuristic	 Algorithms	 (DIMMA), shows 
guidelines to everyone who wants to design 
and implement a metaheuristic algorithm. Web-
ster’s collegiate dictionary defines methodol-
ogy as “a body of methods, rules, and postulate 
employed by a discipline” or “the analysis of 
the principles or procedures of inquiry in a 
particular field” (Merriam-Webster, 1997).

DIMMA includes several phases, steps, 
disciplines, and principles to design and 
implement a specific metaheuristic for a given 
optimization problem. In other words, DIMMA 
refers to the methodology that is used to stan-
dardize process of design and implementing a 
metaheuristic algorithm. In Sections 2-5 weWe 
explain the architecture of DIMMA and its 
phases and steps, In Section 6 wefollowed by 
a description of each step of DIMMA using 
design and implementation of Tabu Search 
(TS) metaheuristic for Travelling Salesman 
Problem (TSP) as a case study.

2. ArchItecture oF dImmA

The architecture of DIMMA has been inspired 
from Rational	Unified	Process (RUP) which 
is a methodology for software engineering 
(Kroll & Krutchten, 2003). DIMMA has two 
dimensions including dynamic and discipline 
dimension (Figure 1). Dynamic dimension is 
the horizontal dimension, which includes phases 
of the methodology: initiation, blueprint, and 
construction. Discipline dimension is the verti-
cal dimension that shows the disciplines, which 
logically group the steps, activities, and artifacts.

DIMMA has three sequential phases that 
each of them has several steps (Figure 2). In 
each step, we define several activities, which 
must be done to complete the steps. These 
phases are as follows: initiation, in which the 
problem in hand must be understood precisely, 
and the goal of designing metaheuristic must 
be clearly defined. The next phase is blueprint, 
the most important goals of this phase are se-
lecting metaheuristic solution method, defining 
performance measures, and designing algorithm 
for our solution strategy. The last phase is 
construction in which implementing the de-
signed algorithm, parameters tuning (parameter 
setting), analyzing its performance, and finally 
documentation of results must be done. In some 
steps, it is necessary to review pervious steps 
to justify and improve decisions and algorithm. 
For example, it is common for the algorithm to 
be modified after the performance evaluations. 
These backward movements are illustrated in 
Figure 2.

3. InItIAtIon PhASe

Step 1.1: State the Problem

Stating the problem is the step 1.1 in DIMMA 
that is helpful in narrowing the problem down 
and make it more manageable. To state the 
problem, one can write simple statement that 
includes one or more objectives, inputs, outputs, 



60   International Journal of Applied Metaheuristic Computing, 1(4), 58-75, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

and assumptions of problem. In this step, a 
mathematical model can be provided for clar-
ity. However, in some cases, it is difficult to 
formulate the problem with an unambiguous 
analytical mathematical notation.

The structure of problem such as multi-
objective approaches, dynamic aspects, continu-
ous or discrete modeling which is defined here 
can have significant effects on the next steps 
including defining goals, selecting solution 
strategy, and defining performance measures.

Figure	1.	Two	dimensions	of	DIMMA	and	level	of	effort	in	each	discipline	during	the	phases

Figure	2.	Steps	in	each	phases	of	DIMMA



International Journal of Applied Metaheuristic Computing, 1(4), 58-75, October-December 2010   61

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Step 1.2: define Goals

In the step 1.2 of DIMMA, the goals of develop-
ing the metaheuristic must be defined clearly. 
All the experiments, performance analysis 
measures, and statistical analysis will depend 
on these goals. In addition, goal definition can 
be helpful in selecting solution strategy.

Some goals of designing the metaheuristic 
are: (1) reducing search time in comparison with 
exact methods or another metaheuristics, (2) 
improving quality of solutions, (3) robustness 
in terms of the instances, (4) solving large-scale 
problems, (5) easiness of implementation, (6) 
easiness to combine with other algorithms to 
improve performance, (7) flexibility to solve 
other problems or optimization models, and (8) 
providing a tight approximation to the problem. 
Selecting instances and solution method, and 
defining performance measures must be done 
according to selected goals. For example, if 
you want to reduce the search time, you must 
select time measurements in step 2.2, and you 
must select instances which can be comparable 
to another research works.

Step 1.3 Select Instances

In the step 1.3 of DIMMA, we must select input 
instances carefully to perform the evaluation 
of the algorithm. The chosen instances must 
be representative of the problem that one is 
trying to solve. The selected structure of input 
instances may influence the performance of 
metaheuristics significantly. To obtain inter-
esting result and to allow the generalization of 
the conclusions, the selected instances must be 
diverse in terms of size of the instances, their 
complexity, and their structure (Alba & Lugue, 
2005; Talbi, 2009; Silberholz & Golden, 2010). 
Keep in mind that according to No Free Lunch 
(NFL) theorem (Wolpert & Macready, 1997), 
no optimization algorithm is better than any 
other on all possible optimization problems; it 
means that, if algorithm A performs better than 
B for a given problem, there is no proof that 
A is always better than B and there is always 
another problem where B performs better than 

A. Therefore, the aim of designing an algorithm 
must be for a class of problems (Talbi, 2009).

Instances which are used for implementing 
and analyzing metaheuristics can be divided into 
real-life and constructed instances. Real-life 
instances are taken from real world applications. 
Pure	real-life and random	real-life instances 
are the two types of real life instances. Pure 
real-life instances are the practical instances of 
real world applications. If available, they are 
the good tools for evaluating the performance 
of a metaheuristic. Obtaining pure real-life 
instances is difficult, because those data aren’t 
public, and collecting such data may be time 
consuming or expensive (Talbi, 2009; Silberholz 
& Golden, 2010). Random real-life instances 
are an alternative of real-life instances which 
use random real instances. In this type of in-
stances, the structure of the real-life problem is 
preserved, but details are randomly changed to 
produce new instances (Alba & Lugue, 2005; 
Fischetti, Gonzalez, & Toth, 1997).

Standard	 instances and pure	 random	
instances are the two types of constructed 
instances. Standard instances are the instances 
that are widely used in experimentations, and be-
cause of that, became standard in literature. OR-
Library (Beasley, 1990), MIPLIB (Achterberg, 
Koch, & Martin, 2003), and TSPLIB (Reinelt, 
1991) are three examples of public libraries 
of standard instances which are available on 
Internet. By means of the standard instances we 
can compare our designed metaheuristic with 
another methods in literature (Alba & Lugue, 
2005; Talbi, 2009). Finally, when none of the 
above instances are available, the remaining 
alternative is pure random instance generation. 
Although this type of instances can generate a 
wide range of instances with different size and 
complexity, they are often too far from real-life 
problems to reflect their structure and important 
characteristics and as a result, performance 
evaluation using only this type of instances 
might be controversial (Alba & Lugue, 2005; 
Gendreau, Laporte, & Semet, 1998).

After selecting instances, the selected in-
stances must be divided into two subsets; one 
for tuning the metaheuristic parameters and 



62   International Journal of Applied Metaheuristic Computing, 1(4), 58-75, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

the second for evaluating the algorithm perfor-
mance with tuned parameters. Tuning instances 
should be representative of the whole class of 
instances that the algorithm will eventually 
encounter. Therefore, since tuning instances 
are representative of another, the performance 
of algorithm on these two subsets of instances 
must be similar to each other. Also the instances 
which are used for tuning parameters must not 
be applied in performance evaluation because 
this may lead to controversial results that the 
parameters are just suitable for these problems 
(Biratteri, 2009).

In addition, after selecting instances, clas-
sifying them might be useful. Classify instances 
means categorizing them into classes according 
to some important factors such as size and com-
plexity. Performance analysis of constructed 
metaheuristic algorithm must be done on each 
class of this problem instances (Silberholz 
& Golden, 2010). This kind of approach can 
be found in Hartmann and Kolisch (2000) in 
which three factors such as network complex-
ity, resource factor, and resource strength are 
used to classify instances for project scheduling 
problem. Sometimes it is useful to use fitness	
landscape	analysis for classifying the instance. 
This work may help to know the difficulties and 
structure of instances (see Stadler & Schnabl, 
1992; Stadler, 1995).

4 bluePrInt PhASe

Step 2.1: Select Solution Strategy

In step 2.1 of DIMMA, after reviewing existing 
solution methods for the problem, the neces-
sity of using metaheuristics must be specified. 
Indeed, according to the existing solution 
methods, it must be distinguished if applying 
metaheuristic for the problem is necessary or 
not. If a metaheuristic approach is selected as 
a solution method, one can go to the next step; 
otherwise we must stop in this point.

According to the situation, we can select 
one of the solution strategies such as exact 
algorithm, heuristic algorithm, metaheuristic 

algorithm, hybrid	method, parallel	algorithm, 
and cooperative	algorithm.

For selecting metaheuristic or exact meth-
ods as a solution strategy, we must keep in mind 
four main factors. First, one is the complexity 
of a problem. Complexity can be seen as an 
indication of hardness of the problem. The 
second important factor is the size of input 
instances. In the case of small instances, the 
problem may be solved by an exact approach, 
even if the problem is NP-hard. The structure 
of the instances is another important factor. 
Some of the problems with specific structure 
by medium or even large dimensions may be 
solved optimally by exact algorithms. The last 
factor is the required	search	time to solve a given 
problem which must take into account. If we 
have real-time constraint (depend on problem, 
can be some seconds to some months), even 
if the complexity of problem is polynomial, 
the using of metaheuristic can be justified. If 
for a given problem, there is an exact or other 
state of the art algorithm in literature, select-
ing metaheuristic, as a solution strategy is not 
rational (Talbi, 2009).

In addition to above factors, ease of use of 
certain metaheuristic over certain problem can 
play an important role. For example, ACO is 
very intuitive for TSP, but may be difficult to 
adapt to continuous problems. Also, in some 
cases, the direct use of a generic metaheuristic 
would not lead to good results and sometimes 
there is a need to adapt it for the problem with 
the use of specialized heuristics.

Hybrid algorithms are one of the ap-
proaches to use metaheuristics as optimization 
tools. A hybrid algorithm is a combination of 
complete (exact) or approximate algorithms 
(or both) used to solve the problem in hand 
(El-Abd & Kamel, 2005). These methods are 
used when we want the specific advantages of 
different approaches.

The central goal of parallel computing is to 
speed up computation by dividing the workload 
among several processors. From the view point 
of algorithm design, pure parallel computing 
strategies exploit the partial order of algorithms 
(i.e., the sets of operations that may be executed 



International Journal of Applied Metaheuristic Computing, 1(4), 58-75, October-December 2010   63

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

concurrently in time without modifying the 
solution method and the final solution obtained) 
and thus correspond to the natural	parallelism 
present in the algorithm (Crainic & Toulouse, 
2003). Cooperative algorithms are a category 
of parallel algorithms, in which several search 
algorithms are run in parallel in order to solve 
the optimization problem in hand. The search 
algorithms (run in parallel) may be different, 
that is why a cooperative search technique may 
be also viewed as a hybrid algorithm (El-Abd 
& Kamel, 2005).

After selecting solution strategy, we must 
specify algorithm components for our problem. 
This specification can be helpful in the step 
of selecting data structure and designing the 
algorithm.

Step 2.2: define 
Performance measures

In this step, the performance measures are se-
lected for the step of performance analysis. We 
must select the appropriate measures according 
to the selected goals of using metaheuristics. 
For exact solution methods, in which the global 
optimality is guaranteed, search time is the 
main indicator to evaluate the performances of 
the algorithms. But, in the case of metaheuris-
tics which try to find near optimal solution 
in reasonable time, both solution quality and 
computational time are the two main indicators 
of performance (Alba & Lugue, 2005; Talbi, 
2009). In metaheuristic search methods, the 
indicators to evaluate the effectiveness include 
quality	of	solutions, computational	effort, and 
robustness (Barr et al., 1995).

Quality of solutions is based on measuring 
the distance to one of the following solutions 

(Figure 3): global	optimal	solution, lower (up-
per) bound	solution, best	known	solution, and 
requirements	or	actual	implemented	solution. 
For constructed instances, the global optimal 
is known. In this case, the percentage of runs 
in which the result is equivalent to global op-
timal (success rate), can be the best indicator. 
However, usually this global optimal is not 
available, so the lower or upper bound can be 
used for minimization and maximization prob-
lems, respectively. Several relaxation methods 
such as Lagrangian relaxation can be used to 
find lower and upper bound solution. For some 
standard and popular problems, the best known 
solution is available in the literature which can 
be used as an indicator to evaluating the quality 
of solutions. For real world application, there 
might be predefined goal that can be as a quality 
measurement (Talbi, 2009).

Computational effort is the worst-case or 
average-case complexity and CPU time that 
can be used for theoretical and empirical 
analysis of algorithm efficiency. For theoretical 
analysis, one can use complexity theory to 
calculate the complexity of an algorithm. How-
ever, it is not always sufficient to analyze the 
computation effort theoretically. CPU time is 
a measurement to analyze the computational 
effort empirically. One of the disadvantages of 
CPU time is that it depends on computer char-
acteristics and compiler in which the algorithm 
is compiled (Talbi, 2009; Silberholz & Golden, 
2010). Therefore, many researchers use the 
number of objective function evaluations as a 
measurement of the computational effort, since 
it eliminates the effects of these characteristics 
(Talbi, 2009). However, number of evaluations 
of objective function is not also the best metric 

Figure	3.	Performance	assessment	of	the	quality	of	the	solutions	in	a	minimization	problem.	
(Adapted	from	Talbi,	2009)	



64   International Journal of Applied Metaheuristic Computing, 1(4), 58-75, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

for computation time, because it may not be 
the part that takes the most of computation time.

As we mentioned, another metric for 
performance evaluation is robustness. If the 
results of algorithm have no or small changes 
by deviating in the input instances, the algo-
rithm is robust (Montgomery, 2005). Once the 
experimental results are obtained, standard 
deviation of solution quality must be considered 
as a measurement of robustness.

Performance measures for multiobjective 
optimization (measures for convergence of 
metaheuristics towards the Pareto frontier) 
can be found in Collette and Siarry (2005). 
Moreover, performance measures for parallel 
optimization can be found in Crainic & Tolouse 
(1998). In addition, performance metrics for 
comparison of metaheuristics, such as run 
time and quality of solution, is well discussed 
in Silberholz and Golden (2010). It must be 
stated here that statistical analysis which must 
be done to evaluate performance of algorithm 
is discussed in section 3.3.

Step 2.3: Select data Structure

Before designing the algorithm, it is necessary 
to select a proper data structure in step 2.3 of 
DIMMA. Data structure is a scheme for organiz-
ing information in memory, for better algorithm 
efficiency (MacAllister, 2009; Puntambekar, 
2009). Array, files, lists, trees, and tables are the 
important types of data structures. For instance, 
for TSP, as we will mention in section 6.2, for 
representing a solution, one can use an array 
with the length of number of cities.

Selecting the right data structure can make 
an enormous difference in the complexity of 
the resulting implementation. Pick the right 
data representation can make the programming 
easier. If we select wrong data structure for an 
algorithm, implementing it might be too time 
consuming (Cormen et al., 2002; Skiena & 
Revilla, 2003).

Step 2.4 design Algorithm

In the step 2.4 of DIMMA, overall structure of 
algorithm must be specified. There are various 

ways for specifying an algorithm (Puntambekar, 
2009). Using natural	language is the simplest 
way for specifying an algorithm. In this case, 
we specify the algorithm simply with natural 
language. Although such a specification is 
very simple, it is not usually clear enough 
to implement. Pseudocode is another way of 
specifying an algorithm that is a combination 
of natural and programming language. Using 
pseudocode, one can specify algorithm more 
precisely than a natural language. Instead of 
two previous ways for specifying an algorithm, 
one can use flowchart. Flowchart is a graphical 
specification of an algorithm. After specifying 
the overall structure of algorithm, the correct-
ness of it must be checked. This work can be 
done by using one small instance of valid input.

In addition to the above tools of descrip-
tion of an algorithm, the dynamic behaviours 
of metaheuristics can be described by means 
of some concepts from RUP, such as system 
sequence diagram (SSD) in the UML (Unified 
Modeling Language) (Siau & Halpin, 2001). 
A sequence diagram in UML is a kind of in-
teraction diagram that shows how processes 
operate with one another and in what order. It 
is a construct of a Message Sequence Chart.

The algorithm must also be analyzed ac-
cording to four factors including complexity, 
space	 efficiency, simplicity and generality. 
The number of steps of pseudocode needed to 
specify the algorithm can be the metrics for 
complexity. However, these metrics depend on 
programming language and style of pseudocode 
(Silberholz & Golden, 2010). Space efficiency 
is space or memory usage of an algorithm. 
Simplicity is an important factor, because the 
simpler the algorithm is, the easier it can be 
programmed and debugged. Finally, generality 
is applicability of an algorithm to a wide range 
of inputs (Puntambekar, 2009).

5. conStructIon PhASe

Step 3.1 Implement Algorithm

The implementation of an algorithm is done by 
suitable programming language in step 3.1 of 



International Journal of Applied Metaheuristic Computing, 1(4), 58-75, October-December 2010   65

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

DIMMA. For example, if an algorithm consists 
of objects and related methods then it will be 
better to implement such algorithm using one 
of the object oriented programming language 
such as C++, C# or Java.

In this step, in order to speed out program-
ming and reducing development costs, one can 
use many free software frameworks. Software 
frameworks are reusable programming codes 
and components for metaheuristics. One can 
use frameworks to implement a metaheuristic 
without in-depth knowledge of programming. 
Some of the software frameworks which have 
been proposed for single-objective problems 
are EasyLocal++ (Gaspero & Schaerf, 2001), 
Localizer++ (Michel & Van 2001), GAlib 
(Wall, 1996), MAFRA (Krasnogor & Smith, 
2000), Hotframe (Fink, Voss, & Woodruff, 
1999), iOpt (Voudouris et al., 2001), DREAM 
(Arenas et al. 2002), MALLBA (Alba et al., 
2002), ECJ (Wilson, 2004), and CIlib (Cloete, 
Engelbrecht, & Pampar, 2008). EasyLocal++ 
and Localizer++ have been designed for local 
search algorithms, while GAlib is the framework 
for genetic algorithm. MAFRA is a framework 
for genetic local search algorithm (memtic algo-
rithm). Hotframe is for evolutionary algorithms 
and metaheuristics which use single solution 
instead of population of solutions. Some of 
these frameworks including MALLBA, and ECJ 
are just for evolutionary algorithms. iOpt is a 
framework for genetic algorithm that can handle 
hybrid approaches. CIlib is a framework for 
swarm intelligence and evolutionary computing 
algorithms. Many frameworks, and reusable 
codes for Particle Swarm Intelligence (PSO) can 
be found in Particle Swarm Central1. There are 
also frameworks for several metaheuristics in 
MetaYourHeuristic (Yin, 2010) that can be used 
for new adopters in the field of metaheuristics.

In the case of multi-objective optimization 
some of software frameworks including PISA 
(Bleuler et al., 2003) and ParadiseEO2 have 
been developed. However, ParadiseEO can also 
handle single-objective problems. There are 
also several genetic algorithm source codes for 
single and multi-objective problems in Kanpur 
Genetic Algorithms Laboratory website3.

Step 3.2: tune Parameters

Parameters are the configurable components 
of a metaheuristic algorithm. Metaheuristics 
are sensitive to the value of their parameters. 
Therefore, in step 3.2 of DIMMA, parameter 
tuning, also known as parameter setting, should 
be done. To do this, several number of numerical 
and/or categorical parameters, has to be tuned, 
and to do this scientific method and statistical 
analysis could and should be employed (Birat-
teri, 2009; Talbi, 2009; Barr et al., 1995).

In the most of research papers in the field 
of metaheuristics, parameters are tuned by hand 
in a trial-and-error procedure. This approach has 
several disadvantages such as: time-consuming, 
labor-intensive, and it need practitioner with 
special skills (Biratteri, 2009).

The proper values for the parameters de-
pend on three main factors: the problem at hand, 
the instance of the problem, and the required 
search time. There are two different strategies 
for parameter tuning including off-line and 
on-line strategies.

In off-line tuning strategy, the parameters 
are set before the execution of metaheuristics 
and don’t update during the execution. In this 
strategy one-by-one parameter tuning doesn’t 
guarantee the optimality of parameters values, 
because there is no interaction between param-
eters. To overcome this problem, Design	 of	
Experiments (DoE) can be used (Fisher, 1935; 
Montgomery, 2005; Frigon, 1997; Antony, 
2003; Box, 2005). In DoE approaches, there are 
some factors (parameters) that each of them has 
different levels (potential values of parameters). 
With a full factorial design, the best level of each 
factor can be obtained, but this work takes high 
computational time. However, there are several 
DoE approaches which reduce the number of 
experiments (Montgomery, 2005). DOE refers 
to the process of planning the experiment so that 
appropriate data that can be analyzed by statisti-
cal methods will be collected, resulting in valid 
and objective conclusions (Biratteri, 2009).

The three basic principles of DoE are rep-
lication, randomization, and blocking. Replica-
tion means a repetition of the basic experiment. 



66   International Journal of Applied Metaheuristic Computing, 1(4), 58-75, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Replication has two important properties. First, 
it allows the experimenter to obtain an estimate 
of the experimental error. Second, if the sample 
mean is used to estimate the effect of a factor 
in the experiment, replication permits the ex-
perimenter to obtain a more precise estimate 
of this effect. Randomization means that both 
the allocation of the experimental material and 
the order in which the individual runs or trials 
of the experiment are determined randomly. 
Randomization usually makes this assumption 
valid. Blocking is a design technique used to 
improve the precision with which comparisons 
among the factors of interest are made. Often 
blocking is used to reduce or eliminate the vari-
ability transmitted from nuisance factors; that 
is, factors that may influence the experimental 
response but in which we are not directly in-
terested (Montgomery, 2005). The important 
parameters in DoE approach are response 
variable, factor, level, treatment and effect. 
The response variable is the measured variable 
of interest. In the analysis of metaheuristics, 
the typically measures are the solution quality 
and computation time (Adenso-Díaz & laguna, 
2006). A factor is an independent variable ma-
nipulated in an experiment because it is thought 
to affect one or more of the response variables. 
The various values at which the factor is set 
are known as its levels. In metaheuristic per-
formance analysis, the factors include both the 
metaheuristic tuning parameters and the most 
important problem characteristics (Biratteri, 
2009). A treatment is a specific combination 
of factor levels. The particular treatments will 
depend on the particular experiment design and 
on the ranges over which factors are varied. 
An effect is a change in the response variable 
due to a change in one or more factors (Ridge, 
2007). Design of experiments is a tool that can 
be used to determine important parameters and 
interactions between them. Four-stages of DoE 
consist of screening and diagnosis of important 
factors, modeling, optimization and assessment. 
This methodology is called sequential experi-
mentation, which is used to set the parameters 
in the DoE approach and has been used in this 

paper for the proposed algorithm in the case 
study section (Montgomery, 2005).

Another approach in off-line parameter 
tuning, is to formulate tuning of parameters 
of a metaheuristic as an optimization problem 
(Talbi, 2009). This problem can be seen as an 
independent problem that by optimizing it, the 
best values of parameters are obtained. In the 
case of off-line parameter tuning, Coy et al. 
(2000) proposed a procedure, based on statisti-
cal design of experiments and gradient descent 
that finds effective settings for parameters found 
in heuristics. Adenso-Diaz and Laguna (2006) 
proposed a procedure for parameter tuning by 
means of fractional design of experiments and 
local search. Hutter et al. (2009) proposed An 
Automatic Algorithm Configuration Frame-
work (ParamILS) as a procedure for automatic 
parameter tuning. Another approach for off-line 
tuning parameters is machine learning that can 
be found in Biratteri (2009).

At different time of the search, different 
values for parameters are optimal. Because of 
this, an important drawback of off-line strate-
gies is that the value or parameters are fixed 
and can’t change during the search. Therefore, 
online approaches that update parameters dy-
namically (a random or deterministic update of 
the parameter values without take into account 
the search process) or adaptively (changes the 
values according to the search progress using 
the memory of the search) during the search 
must be designed. In adaptive approaches, the 
parameters are encoded into the representation 
of solutions and as a result by changing solution 
the value of the parameters are also changed.

Resent works on tuning parameters for me-
taheuristic algorithms can be found in Birattari 
et al. (2002), Bartz-Beielstein (2006), Fukunaga 
(2008), and Hutter, Hoos, and Stützle (2007).

Step 3.3: Analyze the 
Performance of Algorithm

In step 3.3 of DIMMA, we must obtain the 
experimental results for different indicators 
to analyze performance of metaheuristic algo-



International Journal of Applied Metaheuristic Computing, 1(4), 58-75, October-December 2010   67

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

rithms with statistical tests, such as t-test, and 
ANOVA models for a comparison of more than 
two algorithms (Cohen, 1995). To use these tests, 
we must obtain some aggregation number that 
summarizes the average and deviation tenden-
cies. These statistical tests are used to determine 
whether obtained conclusion is due to a sampling 
error or not. The selection of a given statistical 
hypothesis-testing tool is performed according 
to the characteristics of the data (Montgomery, 
2005). Generally, it is not sufficient to analyze 
an algorithm based only on theoretical approach, 
so that empirical performance analysis is a 
necessary task to perform and must be done on 
a fair basis (Bartz-Beielstein, 2006; Rardin & 
Uzsoy, 2001; Dean & Voss, 1999). Many trials 
(at least 10, more than 100 if possible) must 
be carried out to derive significant statistical 
results. From this set of trials, many measures 
may be computed (Talbi, 2009) such as mean, 
median, minimum, maximum, standard devia-
tion, the success rate that the reference solution 
(e.g., global optimum, best known, given goal) 
has been attained, and so on.

Step 3.4: document the results

In this step of DIMMA, the documentation 
must be done. The interpretation of the results 
must be explicit and driven using the defined 
goals and considered performance measures. 
Generally, graphical tools are more understand-
able than presenting the large amount of data 
results using tables. Some popular graphical 
tools include interaction plots, scatter plots, 
and box plots (Talbi, 2009).

Interaction plots represent the interaction 
between different factors and their effect on 
the obtained response (performance measure). 
Scatter plot is a tool to illustrate the compromise 
between various performance indicators. For 
instance, the plots display quality of solutions 
versus time, or time versus robustness, or ro-
bustness versus quality. Box plot illustrate the 
distribution of the results through their five-
number summaries: the smallest value, lower 
quartile (Q1), median (Q2), upper quartile (Q3), 
and largest value. Box plot is useful in detect-

ing outliers and indicating the dispersion of the 
output data without any assumptions on the 
statistical distribution of the data. In addition, 
scatter plot is useful to illustrate compromise 
between different performance indicators 
(Tufte, 2001).

6. A cASe Study

In this section, we design and implement tabu 
search metaheuristic for travelling salesman 
problem as a case study to illustrate applicability 
DIMMA. The reason of choosing TS and TSP 
is that they are well known in the literature.

Initiation Phase

In Step 1.1, we state the TSP problem. Given a 
list of m cities and their pairwise distances (or 
costs), the problem is to find a minimum tour 
that visits each city exactly once. In the other 
word, we want to find a minimum Hamiltonian 
tour between a set of cities. According to the 
direction of arcs between cities, the TSP problem 
is divided into two categories: symmetric and 
asymmetric. In symmetric TSP, the arcs are 
undirected; while in the asymmetric TSP, the 
arcs are directed and the costs are depend on 
the directions. In this section, the symmetric 
TSP is chosen as a case study.

For clarity, here a mathematical formula-
tion is presented for the symmetric TSP. Let 
x
j
∈ { }0 1, be	the	decision variable where j runs 

through all arcs A of the undirected graph and 
cj is the cost of traveling that arc. To find a tour 
in this graph, one must select a subset of arcs 
such that every city is contained in exactly two 
of the arcs selected. The problem can therefore 
be formulated as:

min
( )

1
2 1

c x
k k

k J jj

m

∈=
∑∑  (1)

Subject to:

x j m
k

k J j

= ∀ =
∈
∑ 2 1,...,
( )

 (2)



68   International Journal of Applied Metaheuristic Computing, 1(4), 58-75, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

x K K m
j

j A K

≤ − ∀ ⊂ { }
∈
∑ 1 1,...,
( )

       (3)

x or j A
j
= ∀ ∈0 1  (4)

where J(j) is the set of all undirected arcs con-
nected to city j and A(K) is the subset of all 
undirected arcs connecting the cities in any 
proper, nonempty subset K of all cities. The 
objective function (1) is to minimize the tour 
length. Constraint (2) ensures that every city 
is contained in exactly two of the selected arc. 
Indeed, this constraint ensures that the selected 
arcs construct a tour. Constraint (3) is a sub-tour 
elimination constraint that prevents construc-
tion of sub-tours.

In the next step, the goal of solving TSP 
should be defined. Finding a minimum tour in 
acceptable time is the goal of this case study.

In step 1.3, the TSP instances are selected. 
We choose instances from TSPLIB (Reinelt, 
1991) that is one of the popular sources for 
TSP instances (Table 1). Selected instances 
must have enough diversity in terms of size. 
Therefore, we select 12 instances from TSPLIB 
with different sizes.

blueprint Phase

In the first step of blueprint phase, solution 
strategy should be selected. Because the TSP is 
an NP-hard problem (Garey & Johnson, 1979), 

so that we use approximate a metaheuristic al-
gorithm to solve it. In this example, to illustrate 
DIMMA, we use tabu search (Glover & Laguna, 
1997; Gendreau, 2003) as a solution method 
for TSP. It should be noted that, according to 
the structure of TSP, some other metaheuristic 
could be used to solve it.

The main components of TS are repre-
sentation	of	solution, neighborhood	structure 
(move), tabu	list, tabu	tenure, aspiration	crite-
ria, termination	condition, intensification, and 
diversification	strategies.

In step 2.2 the performance measures for 
solving TSP with TS is defined. The defined 
goal is to find a good solution in a reasonable 
time. Therefore, as a case study, performance 
measures which are used for this example are 
solution quality and CPU time. The global op-
tima are known for the selected instances (Table 
1). Therefore, for solution quality measure we 
use error rate from global optima.

In step 2.3, data structure is selected. To 
solve TSP with tabu search, one can use an 
integer array for representation of individu-
als, which shows the permutation of the cities 
(Figure 4). To store this array and its length, 
currentTour[] and currentTourLength are con-
sidered in data structure, respectively.

To construct initial solution we use nearest 
neighborhood heuristic method (Dorigo & 
Stützle, 2004). Therefore, we need an array and 
a variable to store them. Integer array nearest-
NeighborArray[] and integer variable nearest-
NeighborTourLength are used for this purpose. 

Table	1.	Problem	instances	for	TSP	from	TSPLIB	

# Problem	
name Number	of	cities Global	

optima # Problem	
name

Number	of	
cities

Global	
optima

1 ulysses16 16 6859 7 gr202 202 40160

2 ulysses22 22 7013 8 a280 280 2579

3 eil51 51 426 9 pcb442 442 50778

4 berlin52 52 7542 10 gr666 666 294358

5 kroA100 100 21282 11 pr1002 1002 259045

6 rd100 100 7910 12 u1060 1060 224094



International Journal of Applied Metaheuristic Computing, 1(4), 58-75, October-December 2010   69

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

For calculating tour length, we need distances 
between cities, so that, two dimensional integer 
array distancesMatrix[][] is used to store dis-
tances.

A neighborhood solution can be obtained by 
swapping two positions of cities in representa-
tion array (Figure 4). Therefore, neighborhood 
of a solution is all of the solutions that can be 
obtained by one swap.

The characteristics that must be saved 
in tabu list are the pair of cities that recently 
swapped. In this problem, the tabu list is a two 
dimensional array, tabuList[][]. In this array, the 
tabu tenure of swapping two cities i and j are 
stored in ith raw and jth column (Figure 5a). For 
example, the value in 6th raw and 9th column in 
Figure 5a shows the tabu tenure for swapping 
6th and 9th cities. It means cities 6 and 9 cannot 
swap for 2 next iterations.

In this example, aspiration criteria is that 
if the result of a tabu move is better than that 
of the current best-known solution, then this 
move is allowed. For diversification we use 
frequency	based	memory (Glover, 1997), in this 
memory the information of swapping frequen-
cies are stored (Figure 5b). For example, the 
value in 6th raw and 9th column in Figure 5b 
shows the frequency of swapping cities 6 and 
9 in 70 iteration. According to these frequencies, 
one can assign penalty to swap pair cities. The 
more frequency is the more penalties are as-
signed. Therefore, the search can do swaps that 
are rarely done. Finally, for termination condi-
tion a number of iteration is chosen. To do this, 
integer variable notImproveBestSoFar is used 
in data structure. In step 2.4 of DIMMA TS 
algorithm is designed. We use pseudocode to 
specify TS (Figure 6).

Figure	4.	Neighborhood	structure	for	TS	to	solve	TSP

Figure	5.	(a)	Tabu	list	for	TS	to	solve	TSP,	(b)	frequency	based	memory	for	diversification



70   International Journal of Applied Metaheuristic Computing, 1(4), 58-75, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

construction Phase

In step 3.1 of DIMMA, TS algorithm is imple-
mented. For implementing the algorithm, we 
select Java as a programming language. For cod-
ing algorithm we used NetBeens integrated de-
velopment environment. We construct 2 classes 
(TSPByTS and Execution) and 20 methods for 
our algorithm.

In step 3.2, parameters of the TS algorithm 
are tuned. In this example, we use a DoE ap-
proach and Design-Expert statistical software 
(Vaughn et al., 2000) to obtain optimal values 
for parameters.

To tune parameters for the TS algorithm we 
classified instances into two classes, according 
to the number of cities. The instances that have 
less than or equal to 100 cities are categorized in 
class 1, and the other instances are classified into 
class 2. For the first class, instances kroA100 and 
eil51 and for the second-class a280 and pr1002 are 
chosen as representatives for parameter tuning. 
In the TS algorithm, solution quality and CPU 
time are considered as the response variables. 
Factors, their levels, and the final obtained values 
for classes 1 and 2 instances are summarized in 
Table 2 and Table 3. Each block is considered 
with 16 treatments and main effects.

Figure	6.	The	TS	pseudocode	for	TSP

Table	2.	Factors,	their	levels,	and	the	final	obtained	values	for	instances	of	class	1	

Parameter Lowest	value Highest	value Final	Value

Tabu	tenure 5 15 10

Termination	Condition* 5000 40000 30000

Diversification	condition* 1000 10000 3000

* The number of iteration that the best so far solution is not improved

Table	3.	Initial,	ranges,	and	final	values	for	instances	of	class	2	

Parameter Initial	value Range	of	change Final	Value

Tabu	tenure 5 15 14

Termination	Condition* 1000 5000 3000

Diversification	condition* 1000 5000 2000

* The number of iteration that the best so far solution is not improved



International Journal of Applied Metaheuristic Computing, 1(4), 58-75, October-December 2010   71

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Table	4.	Result	of	instance	of	class	1	

Test problem Global 
optimal

Average tour 
length

Average 
relative gap

Average CPU 
time (ms)

Best solu-
tion Relative gap

ulysses16 6859 6859.00 0.0000 191.5 6859.0 0.0000

ulysses22 7013 7013.00 0.0000 449.6 7013.0 0.0000

berlin52 7542 7744.05 0.0267 5039.2 7544.3 0.0003

kroA100 21282 22170.47 0.0417 40847.1 22104.1 0.0492

rd100 7910 8232.51 0.0408 9111.1 8217.6 0.0389

Average 0.0218 0.0177

Table	5.	Result	of	instance	of	class	2	

Test problem Global 
optimal

Average tour 
length

Average 
relative gap

Average CPU 
time (ms)

Best solu-
tion Relative gap

gr202 40160 43304.29 0.0783 9419.4 41787.7 0.0405

pcb442 50778 58197.84 0.1461 60771.5 57386.2 0.1301

gr666 294358 338786.10 0.1509 99886.7 336833.6 0.1443

u1060 224094 256958.92 0.1467 159526.2 252441.6 0.1265

Average 0.1305 0.1104

Figure	8.	global	optimum	and	obtained	solutions	in	each	instances	of	class	2



72   International Journal of Applied Metaheuristic Computing, 1(4), 58-75, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

In step 3.3, the performance of TS algorithm 
is analyzed. We run the algorithm ten times with 
tuned parameters. The results are summarized 
in Table 4 and Table 5. The relative gap is cal-
culated as follows:

relative gap
obtained solution global optima

global optima
=

−  

The step 3.4 of DIMMA is documentation 
that can be done by means of graphical tools. 
Figure 7 shows a sample to illustrate the perfor-
mance of TS for TSP during the time for problem 
eil51. Figure 8 also compares the obtained solu-
tions with global optimal in each instance. The 
figure illustrates that the algorithm can reach to 
near optimal.

concluSIon

According to significant growth in using me-
taheuristics as optimization tools, there must 
be a standard methodology for implement-
ing them. Such a methodology is used for 
recording experience and allows projects to 
be replicated. Moreover, this standard process 
can be a comfort factor for new adopters with 
little metaheuristic background.

We have proposed the DIMMA as a meth-
odology to design and implement metaheuristic 
algorithms. The proposed methodology includes 
series of phases, activities, disciplines, and 
principles to design and implement a specific 
metaheuristic for a given optimization problem. 
In the other word, the DIMMA refers to the 
methodology that is used to standardize process 
of design and implementing a metaheuristic.

We hope the proposed methodological 
approach to design and implementation of 
metaheuristics will draw more researchers to 
standardization of developing metaheuristics.

reFerenceS

Achterberg, T., Koch, T., & Martin, A. (2003). The	
mixed	 integer	 programming	 library:	 Miplib. Re-
trieved from http://miplib.zib.de

Adenso-Díaz, B., & laguna, M. (2006). Fine-tuning of 
algorithms using fractional experimental design and 
local search. Operations	Research, 54(1), 99–114. 
doi:10.1287/opre.1050.0243

Alba, E., Almeida, F., Blesa, M., Cotta, C., D’ıaz, 
M., Dorta, I., et al. Le’on, C., Moreno, L., Petit, J., 
Roda, J., Rojas, A., & Xhafa, F. (2002). MALLBA: 
A library of skeletons for combinatorial optimization. 
In B. Monien & R. Feldman (Eds.), Euro-Par	2002	
Parallel	Processing	Conference (LNCS 2400, pp. 
927-932). Berlin: Springer.

Alba, E., & Lugue, G. (2005). Measuring the perfor-
mance of parallel metaheuristics . In Alba, E. (Ed.), 
Parallel	metaheuristics:	A	new	class	of	algorithm 
(pp. 43–60). New York: John Wiley & Sons.

Antony, J. (2003). Design	of	experiments	for	engi-
neers	and	scientists. Barlington, UK: Butterworth-
Heinemann.

Arenas, M. G., Collet, P., Eiben, A. E., Jelasity, M., 
Merelo, J. J., Paechter, B., et al. (2002). A framework 
for distributed evolutionary algorithms. In Parallel	
Problem	 Solving	 from	Nature	 Conference	 (PPSN	
VII) (LNCS 2439, pp. 665-675). Berlin: Springer.

Barr, R. S., Golden, B. L., Kelly, J. P., Resende, M. G. 
C., & Stewart, W. R. (1995). Designing and reporting 
computational experiments with heuristic methods. 
Journal	 of	 Heuristics, 1(1), 9–32. doi:10.1007/
BF02430363

Bartz-Beielstein, T. (2006). Experimental	research	
in	evolutionary	computation. New York: Springer.

Beasley, J. E. (1990). OR-Library: distributing test 
problems by electronic mail. The	 Journal	 of	 the	
Operational	Research	Society, 41(11), 1069–1072.

Birattari, M., Stuetzle, T., Paquete, L., & Varrentrapp, 
K. (2002). A racing algorithm for configuring meta-
heuristics. In W. B. Langdon et al. (Eds.), Proceedings	
of	the	Genetic	and	Evolutionary	Computation	Con-
ference	(GECCO	2002) (pp. 11-18). San Francisco: 
Morgan Kaufmann Publishers.



International Journal of Applied Metaheuristic Computing, 1(4), 58-75, October-December 2010   73

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Biratteri, M. (2009). Tuning	Metaheuristics:	A	ma-
chine	learning	perspective. Heidelberg, Germany: 
Springer.

Bleuler, S., Laumanns, M., Thiele, L., & Zitzler, E. 
(2003). PISA: A platform and programming lan-
guage independent interface for search algorithms. 
In Proceedings	of	the	Conference	on	Evolutionary	
Multi-Criterion	optimization	(EMO’03), Faro, Por-
tugal (pp. 494-508).

Box, G., Hunter, J. S., & Hunter, W. G. (2005). 
Statistics	for	experimenters:	design,	innovation,	and	
discovery. New York: Wiley.

Cloete, T., Engelbrecht, A. P., & Pampar, G. (2008). 
CIlib:	A	collaborative	framework	for	computational	
intelligence	 algorithms	 –	 part	 I. Retrieved from 
http://www.cilib.net/

Cohen, P. R. (1995). Empirical	methods	for	artificial	
intelligence. Cambridge, UK: MIT Press.

Collette, Y., & Siarry, P. (2005). Three new metrics 
to measure the convergence of metaheuristics to-
wards the Pareto frontier and the aesthetic of a set 
of solutions in biobjective optimization. Computers	
&	Operations	Research, 32, 773–792. doi:10.1016/j.
cor.2003.08.017

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & 
Stein, C. (2002). Introduction	to	algorithms. London: 
MIT Press.

Coy, S., Golden, B. L., Runger, G. C., & Wasil, E. 
A. (2000). Using experimental design to find ef-
fective parameter settings for heuristics. Journal	of	
Heuristics, 7, 77–97. doi:10.1023/A:1026569813391

Crainic, T. G., & Tolouse, M. (1998). Parallel meta-
heuristic . In Crainic, T. G., & Laporte, G. (Eds.), Fleet	
management	And	logistic (pp. 205–235). Norwell, 
MA: Kluwer Academic publishers.

Crainic, T. G., & Tolouse, M. (2003). Parallel 
Strategies FOR Meta-heuristics . In Glover, F., & 
Kochenberger, G. (Eds.), Handbook	of	metaheuristics 
(pp. 475–514). Norwell, MA: Kluwer Academic 
Publishers.

Doreo, J., Siarry, E., Petrowski, A., & Taillard, E. 
(2006). Metaheuristics	for	hard	optimization. Hei-
delberg, Germany: Springer.

Dorigo, M., & Stützle, T. (2004). Ant	colony	opti-
mization. Cambridge, UK: MIT Press.

El-Abd, M., & Kamel, M. (2005). A taxonomy 
of cooprative search algorithms . In Blesa, M. J., 
Blume, C., Roli, A., & Samples, M. (Eds.), Hybrid	
metaheuristic (pp. 32–42). Heidelberg, Germany: 
Springer. doi:10.1007/11546245_4

Fink, A., Voss, S., & Woodruff, D. L. (1999). Build-
ing reusable software components for heuristic 
search . In Kall, P., & Luthi, H. J. (Eds.), Operations	
Research	Proceedings (pp. 210–219). Heidelberg, 
Germany: Springer.

Fischetti, M., Salazar Gonzalez, J. J., & Toth, P. 
(1997). A branch-and-cut algorithm for the sym-
metric generalized traveling salesman problem. 
Operations	Research, 45(3), 378–394. doi:10.1287/
opre.45.3.378

Fisher, W. (1935). The	Design	of	Experiments. Ed-
inburgh, UK: Oliver and Boyd.

Frigon, N. L., & Mathews, D. (1997). Practical	guide	
to	experimental	design. New York: Wiley.

Fukunaga, A. (2008). Automated discovery of local 
search heuristics for satisfiability testing. Evolu-
tionary	 Computation, 16(1), 31–61. doi:10.1162/
evco.2008.16.1.31

Garey, M. R., & Johnson, D. S. (1979). Computers	
and	intractability. San Francisco: Freeman and Co.

Gaspero, L. Di, & Schaerf, A. (2001). EasyLocal++: 
An object-oriented framework for the design of local 
search algorithms and metaheuristics. In Proceedings	
of	the	MIC’2001	4th	Metaheuristics	International	
Conference, Porto, Portugal (pp. 287-292).

Gendreau, M. (2003). An introduction to tabu search 
. In Glover, F., & Kochenberger, G. A. (Eds.), Hand-
book	of	metaheuristics (pp. 37–54). Norwell, MA: 
Kluwer Academic publishers.

Gendreau, M., Laporte, G., & Semet, F. (1998). A tabu 
search heuristic for the undirected selective travelling 
salesman problem. European	Journal	of	Operational	
Research, 106(2-3), 539–545. doi:10.1016/S0377-
2217(97)00289-0

Glover, F., & Laguna, M. (1997). Tabu	 search. 
Dordrecht, The Netherlands: Kluwer Academic 
Publishers.

Goldberg, D. E. (1989). Genetic	algorithms	in	search,	
optimization	and	machine	learning. Reading, MA: 
Addison Wesley.



74   International Journal of Applied Metaheuristic Computing, 1(4), 58-75, October-December 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Hartmann, S., & Kolisch, R. (2000). Experimental 
evaluation of state-of-the-art heuristics for the 
resource-constrained project scheduling problem. 
European	Journal	of	Operational	Research, 127(2), 
394–407. doi:10.1016/S0377-2217(99)00485-3

Hutter, F., Hoos, H. H., Leyton-Brown, K., & Stützle, 
T. (2009). ParamILS: An automatic algorithm con-
figuration framework. Journal	 of	 Artificial	 Intel-
ligence	Research, 36, 267–306.

Hutter, F., Hoos, H. H., & Stützle, T. (2007). Auto-
matic algorithm configuration based on local search. 
AAAI, 1152-1157.

Kirkpatrick, S., Gelatt, C., & Vecchi, M. (1983). 
Optimization by simulated annealing. Science, 220, 
671–680. doi:10.1126/science.220.4598.671

Krasnogor, N., & Smith, J. (2000). MAFRA: A Java 
memetic algorithms framework . In Freitas, A. A., 
Hart, W., Krasnogor, N., & Smith, J. (Eds.), Data	
Mining	with	Evolutionary	Algorithms (pp. 125–131). 
Las Vega, NV.

Kroll, P., & Krutchten, P. (2003). The	Rational	unified	
process	Made	Easy. Reading, MA: Addison-Wesley.

MacAllister, W. (2009). Data	 Structures	 and	 al-
gorithms	using	 java. New York: Jones & Bartlett 
publishers.

Merriam-Webster. (1997). Merriam-Websters’s	Col-
legiate	Dictionary. Merriam-Websters.

Michel, L., & Van, P. (2001). Hentenryck.	Local-
izer++:	 An	 open	 library	 for	 local	 search (Tech. 
Rep. No. CS-01-02). Providence, RI: Department 
of Computer Science, Brown University.

Montgomery, D. (2005). Design	 and	 analysis	 of	
experiments. New York: Wiley.

Morago, R. J., DePuy, G. W., & Whitehouse, G. E. 
(2006). A solution methodology for optimization 
problems. In A. B. Badiru (Ed.), Metaheuristics 
(pp. 1-10, 13). New York: Taylor & Francis Group.

Puntambekar, A. A. (2009). Analysis	of	algorithm	
and	design. New York: technical publications pune.

Rardin, R. L., & Uzsoy, R. (2001). Experimental eval-
uation of heuristic optimization. Journal	of	Heuris-
tics, 7(3), 261–304. doi:10.1023/A:1011319115230

Reinelt, G. (1991). TSPLIB: a traveling salesman 
problem library. ORSA	Journal	on	Computing,	3, 
376-384. Retrieved from http://softl ib.rice.edu/
softlib/tsplib/

Ridge, E. (2007). Design	 of	 experiments	 for	 the	
tuning	 of	 optimization	 algorithms. Unpublished 
doctoral dissertation, Department of Computer Sci-
ence, University of York, UK.

Siau, K., & Halpin, T. (2001). Unified	Modeling	
Language:	system	analysis,	design	and	development	
issues. Hershey, PA: IGI Global.

Silberholz, J., & Golden, B. (2010). Comparison of 
metaheuristics . In Gendreau, M., & Potvin, J.-V. 
(Eds.), Handbook	of	metaheuristics. Heidelberg, Ger-
many: Springer. doi:10.1007/978-1-4419-1665-5_21

Skiena, S. S., & Revilla, M. A. (2003). Program-
ming	challenges:	The	programming	contest	training	
manual. New York: Springer.

Stadler, P., & Schnabl, W. (1992). The landscape 
of the traveling salesman problem. Physics	 Let-
ters.	 [Part	 A], 161, 337–344. doi:10.1016/0375-
9601(92)90557-3

Stadler, P. F. (1995). Towards a theory of landscapes. 
In R. Lop’ez-Pe˜na, R. Capovilla, R. Garc’ıa- Pelayo, 
H. Waelbroeck, & F. Zertuche (Eds.), Complex	Sys-
tems	and	Binary	Networks (Vol. 461, pp. 77-163). 
Berlin: Springer.

Talbi, E. (2006). Parallel	 combinatorial	 op-
timization. Hoboken, NJ: John Wily & Sons. 
doi:10.1002/0470053925

Talbi, E. (2009). Metaheuristics:	 from	 design	 to	
implementation. Hoboken, NJ: John Wiley & sons.

Thierens, D. (2008). From Multi-start Local Search 
to Genetic Local Search: a Practitioner’s Guide. In 
Proceedings	 of	 the	 2nd	 International	 Conference	
on	Metaheuristics	and	Nature	Inspired	Computing	
(META’08). Tunisia: Hammamet.

Tufte, E. R. (2001). The	Visual	Display	of	Quantitative	
Information (2nd ed.). Cheshire, CN: Graphics Press.

Vaughn, N., Polnaszek, C., Smith, B., & Helseth, T. 
(2000). Design-Expert	6	User’s	Guide. Stat-Ease Inc.

Voss, S., & Woodruff, D. L. (2002). Optimization	
software	class	libraries. Norwell, MA: Kluwer.

Voudouris, C., Dorne, R., Lesaint, D., & Liret, A. 
(2001). iOpt: A software toolkit for heuristic search 
methods. In Proceedings	of	the	International	Con-
ference	 on	 Principles	 and	Practice	 of	 Constraint	
Programming (LNCS 2239, pp. 716-729). Berlin: 
Springer.



International Journal of Applied Metaheuristic Computing, 1(4), 58-75, October-December 2010   75

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Wall, M. (1996). GAlib:	A	C++	library	of	genetic	
algorithm	 components	 (Tech.	 Rep.). Mechanical 
Engineering Department, Massachusetts Institute 
of Technology.

Wang, Y. (2010). A Sociopsychological Perspective 
on Collective Intelligence in Metaheuristic Comput-
ing. International	Journal	of	Applied	Metaheuristic	
Computing, 1(1), 110–128.

Wilson, G. C., McIntyre, A., & Heywood, M. 
I. (2004). Resource review: Three open source 
systems for evolving programs—Lilgp, ECJ and 
grammatical evolution. Genetic	Programming	and	
Evolvable	Machines, 5(19), 103–105. doi:10.1023/
B:GENP.0000017053.10351.dc

Wolpert, D. W., & Macready, W. G. (1997). No free 
lunch theorems for optimization. IEEE	 Transac-
tions	 on	 Evolutionary	 Computation, 1(1), 67–82. 
doi:10.1109/4235.585893

Yin, P. Y. (2010). MetaYourHeuristic	V.	1.3,	Intel-
ligence	Computing	Laboratory,	National	Chi	Nan	
University,	 Taiwan. Retrieved from http://intel-
ligence.im.ncnu.edu.tw

endnoteS
1  http://www.particleswarm.info/Programs.

html
2  http://paradiseo.gforge.inria.fr
3  http://www.iitk.ac.in/kangal/codes.shtml

Masoud	Yaghini	is	Assistant	Professor	of	Department	of	Rail	Transportation	Engineering,	School	
of	Railway	Engineering,	Iran	University	of	Science	and	Technology.	His	research	interests	in-
clude	data	mining,	optimization,	metaheuristic	algorithms,	and	application	of	data	mining	and	
optimization	techniques	in	rail	transportation	planning.	He	published	several	books	and	papers	
in	the	field	of	data	mining,	metaheuristics,	and	rail	transportation	planning.	He	is	teaching	data	
mining,	advanced	operations	research,	and	metaheuristic	algorithms	postgraduate	courses.

Mohammad	Rahim	Akhavan	Kazemzadeh	is	a	MSc.	Student	in	Rail	Transportation	Engineering,	
School	of	Railway	Engineering,	Iran	University	of	Science	and	Technology.	His	research	interests	
are	metaheuristics	optimization	methods,	parameter	tuning	of	metaheuristics,	multicommodity	
network	design	problems,	and	optimization	in	rail	transportation	problems.	He	has	one	under-
publishing	book	in	the	field	of	metaheuristics	and	some	published	papers	in	the	field	of	network	
design	and	metaheuristics.


